
Bradley and co-workers⁴ have studied the reactions of $LiN[Si(CH_3)_3]_2$ with a variety of transition metals and have prepared some interesting three-coordinate complexes. We have isolated novel four-coordinate derivatives of titanium and vanadium 3 from the reaction of 2 equiv of $LiN[Si(CH_3)_3]_2$

with the appropriate diketonate complex. They are air-sensitive, highly colored crystalline solids. The mass spectra of the dipivalolylmethanato derivatives exhibit parent ion peaks. The magnetic and spectral data are consistent with the proposed structure. Several reactions of $LiN[Si(CH_3)_3]_2$ with (diket)- $CrCl_2(THF)_2$ gave brown to orange-red solutions but no products could be isolated in pure form.

We are currently examining further reactions and the chemistry of these novel diketonate stabilized organometallic and dialkylamide complexes.

References and Notes

- (1) R. R. Schrock and G. W. Parshall, Chem. Rev., 1, 243 (1976); P. J. Davidson, M. F. Lappert, and R. Pierce, ibid., 1, 219 (1976).
- L. E. Manzer, Inorg. Chem., 15, 2567 (1976).
- L. E. Manzer, *Inorg. Chem.*, submitted for publication. E. C. Alyea, D. C. Bradley, and R. G. Copperthwaite, *J. Chem. Soc.*, *Dalton*
- (4)Trans., 1580 (1972).
- (5) D. F. Evans, J. Chem. Soc., 2003 (1959).
- B. N. Figgls and J. Lewis, *Prog. Inorg. Chem.*, 6, 37 (1967). A. B. P Lever, "Inorganic Electronic Spectroscopy", Elsevier, New York, (7)
- N.Y., 1968.

Leo E. Manzer

Contribution No. 2431, Central Research and Development Department, Experimental Station E. I. du Pont de Nemours and Company Wilmington, Delaware 19898 Received September 17, 1976

Exciplex Quenching. A Frontier Molecular Orbital Rationale

Sir:

The quenching of singlet exciplexes by electron donors or acceptors¹ has been highly useful in mechanistic dissection of photocycloadditions reactions.² We now report a simple frontier molecular orbital (FMO) analysis of data for quenching of a large number of exciplexes by electron donors from which order of magnitude predictions of quenching rates $(k_{\rm O})$ can be made for any singlet exciplex.

Four new exciplex orbitals χ_1 , χ_2 , χ_3 , and χ_4 are derived from the HOMO_D-HOMO_A and LUMO_D-LUMO_A interactions³ when an excited donor, D*, forms an exciplex with a ground-state acceptor, A (Figure 1). We suggest that perturbation of χ_2 by the HOMO of the quenching donor, D_Q , adequately describes the quenching. Such perturbations will be maximal when HOMO_{Do} lies close to χ_2 in energy and should result in actual electron transfer when it is exothermic. Donor quenching efficiencies for any exciplex can, in principle, be estimated from the HOMO_{DQ}- χ_2 energy gap, $\Delta E_Q'$. Since the energy of χ_2 is presently unobtainable, we assume that the energy of HOMO_D approximates to that of χ_2 and calculate an alternative parameter $\Delta E_{\rm O}[Ip(D) - Ip(D_{\rm O})]^4$. A plot of

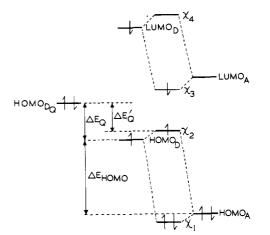


Figure 1. FMO picture of exciplex formation and quenching by an electron donor.

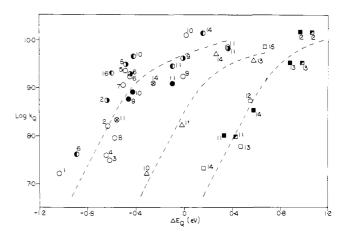


Figure 2. Log $k_{\rm Q}$ vs. $\Delta E_{\rm Q}$ for quenching of exciplexes by electron donors. Exciplexes are: anthracene-FN (\bullet), pyrene-FN (\bullet), P-F (\bullet), P-FN (\bullet), 9CNP-PhNEt₂ (\otimes), 3,6MeO₂P-9CNP (Δ), 9CNP-t-An (\blacksquare), 9CNP-p-BA (\square), and the pyrene excimer (\square). Quenchers are: (1) 2methyl-but-2-ene, (2) ethyl vinyl ether, (3) styrene, (4) α -methylstyrene, (5) dihydropyran, (6) 2,3-dimethyl-but-2-ene, (7) β -methylstyrene, (8) anisole, (9) phenanthrene, (10) p-methoxy- β -methylstyrene (t-An), (11) triethylamine, (12) triphenylamine, (13) diethylaniline, (14) diphenylamine, (15) N, N'-tetramethyl-p-phenylenediamine, (16) diethylamine.

Table I

Exciplex	λ_{max}^{c} (nm)	$ au^{e}$ (ns)	$\Delta E_{\rm HOMO}^{f}(\rm eV)$
Anthracene-FN	570 ^d	7.5	3.74
Pyrene-FN	515	9.6	3.74
P-F ^a	480	1.4	3.37
P-FN	460	12.5	3.27
9CNP-PhNEt ₂	489	16.8	1.46
$3,6MeO_2P-9CNP$	444	8.0	1.04
9CNP-tAn	430	7.9	0.73
9CNP-pBA ^b	438	15.8	0.63
Pyrene excimer	478	16.4 <i>^g</i>	0.00

^a Dimethylfumarate. ^b p-Butenylanisole. ^c In benzene. Corrected, ± 3 nm. ^d ± 10 nm. Very weak emission. ^e Air-saturated benzene. Determined either by nanosecond flash spectroscopy or from the effect of air saturation on the exciplex fluorescence intensity. $f \Delta E_{HOMO}$ = Ip(A) - Ip(D). ^g At [pyrene] = 5.2×10^{-2} M.

log $k_{\rm O}$ vs. $\Delta E_{\rm O}$ for eight exciplexes (Table I), the pyrene excimer, and 16 different quenchers is given in Figure 2. Although the data points show considerable scatter, not surprising considering the wide structural variation in donors and exciplexes, several trends are apparent: (1) Three lines adequately encompass all the data. (2) Each line shows the pronounced

positive slope ($\approx 4.0 \text{ eV}^{-1}$) expected from a model in which the quencher acts as an electron donor.⁷ Curvature seems to occur, again as expected, when k_0 approaches the diffusion limit. (3) Data points for arene-fumaronitrile (FN), phenanthrene(P)-dimethyl fumarate (F), and 9-cyanophenanthrene (9CNP)-diethylaniline (PhNEt₂) exciplexes cluster together and are well represented by the leftmost line. These exciplexes are quenched ($k_Q \approx 10^8 \text{ M}^{-1} \text{ s}^{-1}$) even when ΔE_Q is negative $(\approx -0.6 \text{ eV})$. (4) The pyrene excimer and the 9CNP-transanethole (t-An) and 9CNP-p-butenylanisole (p-BA) exciplexes are far less quenchable. The single line which correlates data for these quite different complexes is shifted by about +1.0 eV from the leftmost line. These cases require positive $\Delta E_{\rm O}$ (+0.4 eV) for modest quenching rates ($k_{\rm O} \approx 10^8 \, {\rm M}^{-1}$ s^{-1}). (5) The "heteroexcimer" 9CNP-3,6-dimethoxyphenanthrene $(3,6MeO_2P)$ fits an intermediate line.

The common slope for all data points suggests a common charge-transfer mechanism for both exciplex and excimer quenching.

$$D_{Q} + (D^{\delta^{+}} \cdots A^{\delta^{-}})^{*} \rightarrow (D_{Q}^{\delta^{+}} \cdots D \cdots A^{\delta^{-}})$$
$$\rightarrow D_{Q} \cdot^{+} + D + A \cdot^{-}$$

Termolecular photochemistry may be expected to result from the radical ions D_Q .⁺ and A.⁻. The unsymmetrical geometries, previously demonstrated⁸ for one emissive *exterplex*, and which we have suggested^{1a} as being likely for the quenching interaction are easily rationalized. If D_Q is to perturb χ_2 , the site of interaction should be at D where χ_2 is predominantly located.

Failure of a single line to correlate all data is, we believe, due to the failure of $\Delta E_{\rm O}$ as an approximation to $\Delta E_{\rm O}'$. We note that the exciplexes which are quenched even when $\Delta E_{\rm O}$ is negative have large $(\gtrsim 1.5 \text{ eV})$ HOMO_D-HOMO_A (ΔE_{HOMO}) energy gaps. ΔE_{HOMO} is, however, small (<0.8 eV) for the group which requires positive values of ΔE_Q for efficient quenching. The single "heteroexcimer" is an intermediate case ($\Delta E_{HOMO} = 1.04 \text{ eV}$). When ΔE_{HOMO} is large $(\gtrsim 1.5 \text{ eV})$ exciplex binding must surely be exclusively CT with D consequently electron deficient and χ_2 located almost exclusively on it. Presumably, χ_2 is then like the HOMO of D.⁺. The essentially unit positive charge must lower χ_2 relative to HOMO_D, leading to $\Delta E_Q' \gg \Delta E_Q$ and the observation of quenching even for values of $\Delta E_{\rm O}$ down to about -1.0 eV. Since χ_2 lies *below* HOMO_D, we predict the excited monomer (D*) will be quenched less efficiently than the exciplex (D- $\cdot A$)* by a given D_Q. This appears to be the case, for example, $k_{\rm O} \approx 5 \times 10^6 \ {\rm M}^{-1} \ {\rm s}^{-1}$ for quenching of phenanthrene fluorescence by 2,3-dimethyl-2-butene whereas $k_Q = 1.6 \times 10^9$ M^{-1} s⁻¹ for quenching^{1a} of the P-FN exciplex by the same donor.

When ΔE_{HOMO} is small ($\leq 0.8 \text{ eV}$), χ_2 is a combination of HOMO_D and HOMO_A with the energy of χ_2 above that of HOMO_D as predicted by the simple FMO model (Figure 1). Here $\Delta E_Q' < \Delta E_Q$ and the quenching is less efficient than is predicted from values of ΔE_Q . Since χ_2 lies above HOMO_D we expect D* will be quenched more efficiently than (D···A)* by a given D_Q. This also seems to be the case, for example, $k_Q \approx 5.9 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$ for quenching of the pyrene excimer by diethylaniline whereas $k_Q = 6.2 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ for quenching of pyrene monomer fluorescence by the same donor.

The FMO rationale above should be applicable, mutatis mutandis, to acceptor quenching also. We have performed a few experiments with acceptors as quenchers. Correlation is hampered by the difficulty of obtaining electron affinities. The estimates obtained from Ip-Es (the singlet excitation energy) suggest $\Delta E \sim 1 \rightarrow 1.5$ eV is required for acceptor quenching at $k_Q \approx 10^9$ M⁻¹ s⁻¹, but further data are required before more dependable predictions can be made.

Our results lead to reasonable predictions of donor quenching rates for *any* singlet exciplex. The utility of the exciplex quenching method for exploring the role of exciplexes in photochemical reactions is thus greatly enhanced.

Acknowledgments. We thank the Robert A. Welch Foundation (Grant No. AT-532), the U.T. Dallas Organized Research Fund, and the Clark Foundation of Dallas for financial support.

References and Notes

- (1) (a) R. A. Caldwell, D. Creed, and H. Ohta, *J. Am. Chem. Soc.* **97**, 3246 (1975);
 (b) H. Ohta, D. Creed, P. H. Wine, R. A. Caldwell, and L. A. Melton, *ibid.*, **98**, 2002 (1976).
- (2) (a) R. A. Caldwell and L. Smith, J. Am. Chem. Soc., 96, 2994 (1974); (b) D. Creed and R. A. Caldwell, *ibid.*, 96, 7369 (1974); (c) F. D. Lewis, private communication; (d) C. Pac, private communication.
- (3) See for example (a) K. N. Houk, Acc. Chem. Res., 8, 361 (1975); (b) M. J. S. Dewar and R. C. Dougherty, "The PMO Theory of Organic Chemistry", Plenum Press, New York, N.Y., 1975.
- (4) We have equated HOMO energies with vertical ionization potentials (lps) obtained from a variety^{2a,5,6} of sources.
- (a) J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Fraxl, and F. H. Field, *Natl. Stand. Ref. Data Ser.*, *Natl. Bur. Stand.*, No. 26 (1969); (b) R. Boschi, E. Clar, and W. Schmidt, *J. Chem. Phys.*, 69, 4406 (1974); (c) J. P. Maier and D. W. Turner, *J. Chem. Soc.*, *Faraday Trans. 2*, 69, 196 (1973); (d) R. Sustmann and H. Trill, *Tetrahedron Lett.*, 4271 (1972); (e) H. Bock and H. Stafast, *Chem. Ber.*, 105, 1158 (1972); (f) Y. Nakato, M. Ozaki, A. Egawa, and H. Tsubomura, *Chem. Phys. Lett.*, 9, 615 (1971).
- (6) Vertical lps of 3,6-dimethoxyphenanthrene (7.52 eV) and 9-cyanophenanthrene (8.44 eV) were obtained by Professors K. N. Houk and E. J. McAlduff of Louisiana State University using photoelectron spectroscopy.
- (7) T. R. Evans, J. Am. Chem. Soc., 93, 2081 (1971), and references therein.
- (8) H. Beens and A. Weller, Chem. Phys. Lett., 2, 140 (1968).
- (9) Robert A. Weich Foundation Fellow.

David Creed,*9 Richard A. Caldwell Hiroyuki Ohta, D. C. DeMarco

Department of Chemistry, The University of Texas at Dallas Richardson, Texas 75080 Received July 12, 1976

The Utilization of a Polymeric Phenylthiomethyllithium Reagent for the Homologation of Alkyl Iodides and Its Application for the Study of Intraresin Reactions of Polymer-Bound Functional Groups

Sir:

The concept that lightly cross-linked polymer matrices are perfectly rigid and inflexible is no longer acceptable. In recent years it has been demonstrated that polystyrene chains cross-linked with several percent divinylbenzene have the capability for very significant internal mobility¹ thus permitting polymer-bound functional groups to undergo intraresin reactions.² Nevertheless, there are a number of intriguing reports that suggest restricted interaction of polymer-bound functional groups can be achieved under certain conditions.³ Such conditions include (1) higher levels of cross-linking,^{3b,d,f} (2) very low degrees of polymer substitution,^{3a,e} (3) lower reaction temperatures^{3a} and, possibly, (4) the clustering of charges located near the polymer backbone.^{3c} Evidence in support of the latter two factors is very limited.

We became interested in the possible role of charge clustering and temperature in controlling the interaction of polymer chains after observing the selective monooxidation of 1,7-heptanediol with a polymeric thioanisole reagent.^{3e} Although the results clearly demonstrated that selective formation of the monohydroxyaldehyde increased with lower concentrations of polymer-bound functional groups, it was not possible to assess the influence of the relatively low reaction temperature or the clustering of ionic groups on the observed selectivity. Thus, temperatures approaching the glass transition temperature might be expected to result in relatively rigid polymer chains as observed in the dry state,⁴ while the devel-